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Abstract. The purpose of this paper is to review the equivalence, or  the difference, of the 
two possible force laws in magnetostatics for interacting particles: namely the Ampere and 
Lorentz force laws. We show that these two laws are mathematically different and physically 
correct since they apply to two different systems: the former must be used for a closed 
system and the latter for an open system. 

1. Introduction 

There is an ongoing controversy between the followers of the Ampkre force [ 1-51 and 
the followers of the Lorentz force [6-141 concerning the equivalence of the two laws 
in magnetostatics. A current element I ’  dr’ located at the point r’ will exert a Lorentz 
force on another current element I d r  located at the point r given by 

r - r ’  R 
with n =--- 

R R  
- 11’ 

d2FL = ~ 2 ~ 2  d r  A (dr’ A n )  

Conversely the force exerted by the element I d r  on the element I ’  dr‘  is 

In contrast the law proposed by Ampkre has the expression: 

11’ 
c R  d 2 F A = m  [3(dr*  n)(dr’ * n ) - 2 ( d r .  dr’)]n. (3) 

Knowing that 

d r r \ ( d r ’ r \ n ) = ( d r * n )  dr ’ - (dr .dr ’ )n  (4) 
dr’ A (dr  A n ’ )  = (dr’ n ’ )  d r  - (dr  - dr’)n‘ ( 5 )  

we see that the above formula are not symmetric with respect to the line-current 
elements d r  and dr ‘  and therefore the Lorentz force does not obey Newton’s third law 
of the equality of action and reaction: d 2 F L =  -d2FI .  On the contrary the square 
bracket term in formula (3) is symmetric. Therefore the Ampkre law verifies Newton’s 
third law of the equality of action and reaction: d 2 F A =  -d2Fa as a consequence of 
the change of sign of n = -n ‘ .  For closed current loops C and C‘, the total Lorentz 
force is 
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since 

the term in the Lorentz force which does not follow Newton’s third law cancels for 
two closed current loops in interaction, provided that the current elements belong to 
two different circuits. Consequently the Ampkre and Lorentz force laws are equivalent 
in that case. 

2. Self-interaction 

These formulae can also be used to calculate the interaction of one finite current 
element with all the others in the same circuit. In  that case the other elements will no 
longer form a closed loop and therefore the two formulations of the force will differ. 
Now, if one insists on forming a closed loop to calculate the self-interaction of the 
circuit, then the above integrals will present singularities for R = 0 which must be taken 
into account. 

Rather than considering line elements one can compare the two laws in a form 
involving volume-current distributions. To obtain these laws we start from the potential 
vector which is given by 

Knowing that 

I ’  = Js, J ‘  d S  

a priori we have 

In  magnetostatics, since there is no density current perpendicular to the surface of the 
conductor, we can assume the equality of the above equation and therefore the Lorentz 
force becomes 

1 d’F -- - C 2 R 2  J A ( J ’  A n )  d V  d V’ 

which can be rewritten in the form: 

1 
c R  

d2FL = 3 [( J *  n )J ’  - ( J -  J ’ ) n ]  d V d V’. ( 1 1 )  

For the Ampkre force we have 

n 
c R  

d 2 F A = x  [ 3 ( J .  n ) ( J ’ .  n )  - 2 ( J -  J ’ ) ]  d V  d V‘. (12 )  
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Now we can calculate the difference between the two laws for the two cases related 
to the asymmetry of the Lorentz law which are: 

A F =  (d2FA-d2F,)/dVdV' 

AF'=(d2FA-d2FL)/dVdV'  

with 

1 
c2 R 2  

A F  =- [ 3 ( J *  n ) ( J '  * n)n - ( J .  J ' )n  - ( J *  n )J ' ]  

1 
c 2 R 2  

A F '  = - [ 3 ( J .  n ) ( J '  * n)n'- ( J .  J o n ' -  ( J '  * n ' ) J ]  

Let us define the quantities: 

Knowing that 

(16) 
1 

R 
V * K '  = V' * K = 7 [ 3 ( J .  n ) (  J '  * n )  - ( J .  J ' ) ]  

if we substitute equations (16) and (17) in equations ( 1 3 )  and (14) we obtain 

(18) 

(19) 

1 
AF=,(RV'. K - K )  

C 

1 
A F ' = i  (-RV * K'-  K ' ) .  

C 

Since the quantities K and K '  are of opposite sign this implies that the differences A F  
and A F '  cannot be equal due to the presence of the term which is at the origin of the 
discrepancy between the two force laws. 

The difference of the forces exerted on the current volume dV' by the volume V 
is obtained by integrating equation (19) over V. This may be done by using the integral 
identity: 

I v ( R V s K ' + K ' ) d V =  I, ( d S . K ' ) R  (20) 

where S is the surface enclosing V. Therefore, using the definition of K ' ,  the surface 
integral becomes 

R 
( J ' * R ) ( J * d S ) - .  

R' 

Now we can follow the approach of Christodoulides [ 9 ]  concerning the calculation 
of the surface integral, which consists of the outer surface of the current conductor 
on which we have the condition J - d S = O  and two surfaces S ,  and S2 produced by 
sections of the conductor. For a closed current loop, the sum of the integrals on the 
surfaces S, and S2 will cancel since the surface elements d S  on S, and S2 have opposite 
directions, provided that the current volume d V' is excluded from the volume V. 
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If we incorporate the volume d V’ inside the closed volume V, we have to take into 
account the singularity of the integral. We cannot use Christodoulides’s approach by 
enclosing the current distribution dV‘ by a sphere since the quantity J .  d S  is - J ,  on 
one half of the sphere and  J ,  on the other half as shown in figures 1 and  2 of [9]. This 
is the reason why Christodoulides finds zero in his equation (10) because the quantity 
J .  n keeps the same sign on the sphere, which is not the case. Therefore we must 
adopt cylindrical symmetry in this problem and calculate the surface integral on a 
cylindrical box which is represented in figure 1 for the thickness of the box tending 
to zero. This calculation has been done by Bouix [15, p 1531 for a scalar field. If we 
assume that the transverse part of J ‘ ,  which brings the current from the source to the 
circuit, does not give a contribution to the integral then we can use Bouix’s approach 
for the current directed in the z direction only. It is important to remark that for the 
box of figure 1 the quantity ( J ’ .  R ) ( J . d S )  does not change its sign on the surfaces 
S ,  and S 2 .  

For cylindrical coordinates, we have the following definitions: 

a 
n (22) OA = a = R cos e O M  = r =  a tan e A M = R = -  

cos e 
and  

d S  = f d (  r 2 )  d 4  = i d ( a 2  tan’ e )  d 4  

sin 0 
dS=a2--- d e  d 4  

cos3 e 
with 

J .  d S =  J d S  J ’  R = -J’R COS e. 
With the above definitions the integral I on a surface S becomes 

n dS. (24) 

Knowing that for surfaces S ,  and S, the r -z  components of the vector n are sin 0, 

c 

Figure 1. The cylindrical box defining the surface S over which the integral (24) is evaluated. 
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+cos 0 then the r-z components of the integral I are given by 
% sin’8 

I,. = 2 ~ - U  lo JJ‘ 

1; = * 2 m  J J ’ s in  0 dB = +25raJJ’(cos B o -  1). I:’ 
In the above integrals the angle Bo is a function of the distance a which tends to n-/2 
for a --f 0. 

Therefore the quantity a In tan(n-/4+ 8,,/2) which is an indeterminate form tends 
to infinity for a + 0. This can be demonstrated by using I’Hospital’s rule. Thus the 
sum of the integrals I: on the surfaces S ,  and S7 is zero whatever the value of a. In 
contrast the sum of the integrais I ,  is infinite when a tends to zero. Therefore the two 
magnetostatic force laws differ as expected for two coaxial volume-current distribu- 
tions. 

3. Newton’s third law 

The main difference between the two force laws is due to the fact that Ampere’s law 
obeys Newton’s third law while the Lorentz law does not, as can be verified by 
comparing equations ( 3 ) - ( 5 ) .  This point is indeed fundamental as we will see. 

Newton’s third law applies to particles in interaction through internal forces in a 
closed system. In that case only the equality of action and reaction stands. For this 
closed system we have symmetry and consequently the origin of the frame to describe 
the interaction czn be either one of the two particles or the centre of mass as shown 
in figure 2. Now, if we introduce a third particle and use the law of superposition for 
forces, then Newton’s third law does not hold anymore since we have applied an  
external force to our interacting particles, as shown in figure 3. In that case the system 
consisting of the two interacting particles and  the third particle is considered to be an  
open system. We can distinguish external forces from internal ones by looking at the 
position of the centre of mass, which is fixed in the laboratory frame for internal forces. 
This is a general result valid in both classical and relativistic mechanics. 

Therefore it is not surprising to have two force laws: the Ampere law for internal 
forces and the Lorentz law for external forces. In fact we use the Lorentz law for 

A B 
l a 1  

F 

A B 
4 i b l  
-F 

Figure 2. Three possible configurations of the forces for two interacting particles: ( a )  
particle A at  rest, ( b )  particle B at  rest, ( c )  particles A and  B in motion. 
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F " F '  
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/ , 
\ , / , 

4 
L 

Figure 3. Two interacting particles plus a third particle. 

external forces applied to free electrons in vacuum. The distinction between internal 
and external forces is fundamental and  appears in all physics. For example, it is at 
the heart of the controversy about the outcome of the twin paradox as we have 
demonstrated [16]. It is also the reason why there are two kinds of radiation, namely 
spontaneous and  stimulated radiation. 

Now the current in a conductor is due to the motion of free electrons. Therefore 
one can apply the Lorentz force to the electrons. However, this approach raises a 
number of fundamental questions related to this problem. 

The first question concerns the neutrality of the conductor which can be at the 
origin of the resolution of the discrepancy between the two laws as suggested by 
Whitney [17]. The problem of macroscopic charge neutrality also affects all physics. 
However, the macroscopic neutrality of particles, such as the neutron, or of atoms, 
such as the hydrogen atom, and  the neutrality of plasma does not imply microscopic 
neutrality. It is the same as saying that the concept of point charge is not a good 
concept. For example, we know that the neutron has a magnetic moment. Therefore 
there is a difference between macroscopic neutrality of a closed system and the absence 
of microscopic neutrality related to open systems. The question of neutrality of a 
current-carrying conductor has been addressed in the literature [18-201. It has been 
shown [18] that the current density is not totally uniform across the cross section of 
the conductor. 

The second question is: how do  the self and non-self Lorentz forces exerted by the 
magnetic field acting on the drifting electrons transfer the forces to the wire itself? As 
demonstrated by several authors [21-241 this problem is strongly related to the first 
question and  whether or  not the current-carrying conductor forms a closed system. I t  
has also been shown that the Hall effect plays a determining role in the process. As 
a consequence of this effect the current density will flow parallel to the axis of the 
conductor in the steady state because there is a balance between the internal transverse 
forces inside the conductor. Therefore, as pointed out by Whitney [25], the fact that 
the sum of either longitudinal or transverse forces is zero in the steady state does not 
mean that tension or compression does not exist inside a conductor. The issue is, 
rather, whether we are dealing with internal or external forces. 

4. Conclusion 

We have shown that, indeed, the Ampkre and  Lorentz force laws are mathematically 
different. However, they are both physically correct since they address two different 
systems: the former for a closed system and  the latter for an open system. This fact 
certainly deserves further research since it can bring, in our opinion, a better understand- 
ing of the meaning of relativistic theory. 
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